Optical Character Recognition: Neural Network Analysis of Hand-Printed Characters
نویسندگان
چکیده
The main objective of this paper is to introduce a novel method of feature extraction for character data and develop a neural network system for recognising different Latin characters. In this paper we describe feature extraction, neural network development for character recognition and perform further neural network analysis on noisy image segments to explain the qualitative aspects of handwriting.
منابع مشابه
Neural Network Recognition and Analysis of Hand-printed Characters
The main objective of this paper is to introduce a novel method of feature extraction for character data and develop a neural network system for recognising different Latin characters. In this paper we describe feature extraction, neural network development for character recognition and perform further neural network analysis on noisy image segments to explain the qualitative and quantitative a...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملPersian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network
In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments ...
متن کاملMulti-font Optical Character Recognition System for Printed Telugu Text
The Telugu OCR systems available in the market currently recognize only the specific fonts of Telugu. This paper describes the development of a multi-font OCR system for printed Telugu characters using Artificial Neural Networks. In this system classification of the characters is carried out using multi layer neural network Architecture.
متن کاملHierarchically structured neural networks for printed Hangul character recognition
In this paper, we propose a hierarchical neural network which practically recognizes printed Hangul(Korean) characters. This system is composed of a type classification network and six recognition networks. The former classijies input character images into one of the six types by their overall structure, and the latter further classify them into character code. Furthermore, a training scheme in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998